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The double ionization by a single polarized pho-

ton is one of the principle experimental means

to study the electronic structure of atoms and

molecules and to probe electron-electron correla-

tion, which is the main factor which causes double

ionization of a target [1]. An abundant literature

is available for the particular case of (γ, 2e) photo-

double ionization, where the two ejected electrons

are detected in coincidence, specially for the helium

and rare gas targets [2, 3]. In the case of diatomic

targets, theoretical results for the multiply differ-

ential cross section (MDCS) are relatively less fre-

quent. However an experimental detection of the

ejected electrons from stable, naturally existing di-

atomic targets like H2, or N2 is quite similar to that

of atoms, like helium.

The aim of the present work is to give the

first MDCS of (γ, 2e) photo-double ionization of

diatomic nitrogen using a parallelized FORTRAN

procedure. To our knowledge no such data exist, in

spite of the large interest on the molecular dication

in astrophysics and plasma science, dications being

very abundant in the ionosphere of many planets

and in interstellar clouds. In this work we extend

the procedure we have recently applied [4] to the

MDCS evaluation of the (e, 3e) double ionization of

N2 and H2 where we have used the two center dou-

ble continuum function [5]. This has given a bet-

ter agreement with the experimental results on the

(e, 3e − 1) double ionization of hydrogen molecule

[6], and have shown that the introduction of the

electron-electron correlation in the final state is nec-

essary.

Theory

The MDCS of the detection of the two ejected

electrons from a diatomic molecule is fivefold, and

is given by

σ(5)
(ρ) =

d5σ

dΩρdΩ1dΩ2d(k2
1/2)d(k2

2/2)

=
4π2α

ω
|Tfi|

2, (1)

where dΩ1, dΩ2 and dΩρ, are respectively the ele-

ments of the solid angles for the orientations of the

ejected electrons, ρ represents the internuclear axis,

k1 and k2 are the moduli of the wave vectors of the

ejected electrons, α = 7.29735 × 10−3 is the fine-

structure constant and ω is the photon frequency. In

the case of randomly oriented targets, we must pass

to the fourfold differential cross section (FDCS) by

integrating over all possible and equally probable

directions of the molecule in space

σ(4)
=

1

4π

∫

dΩρσ
(5)

(~ρ). (2)

The conservation of the energy for fixed internuclear

distance ρ gives

Ef = E1 + E2 = Ei + ω, (3)

where E1 = k2
1/2, E2 = k2

2/2 represent respectively

the energies of the ejected electrons. Ei represents

the energy needed to free the two bound electrons

in N2. We define the transition matrix element

Tfi =

∫

d~r1

∫

d~r2χ̄f (~r1, ~r2)V ϕi(~r1, ~r2). (4)

Here V is given in the velocity gauge by V =

~ε (~∇r1
+ ~∇r2

) with ~ε representing the polarization

vector for the photon, and ~rj , (j = 1, 2) refer to the

positions of the bound (ejected) electrons.

The final state symmetrized wave function de-

scribing the state of the two equivalent ejected elec-

trons coming from the same molecular orbit is writ-

ten in the following form

χf (~r1, ~r2)=2
−1/2

×(φf (~k1, ~r1,~k2, ~r2) + φf (~k1, ~r2,~k2, ~r1)).(5)

Here

φf (~k1, ~r1,~k2, ~r2) = v(k12)T (~k1, ~r1)T (~k2, ~r2)

×1F1

(

ıα12, 1,−ı(k12r12 + ~k12~r12)

)

(6)

in which we have introduced the electron-electron

correlation [7] ~r12 = ~r1 − ~r2, and

v(k12) = exp (−πα12/2) Γ (1 − ıα12) (7)

represents the Gamow factor with α12 =

(2k12)
−1, ~k12 = (~k1 − ~k2)/2. The final state wave
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function satisfies the ortho-normality condition in

the sense

〈

φf (~k1, ~r1,~k2, ~r2)|φf (~k′1, ~r1,~k
′

2, ~r2)
〉

= δ(~k1 −
~k′1)δ(

~k2 −
~k′2). (8)

In equation (6), the one electron two center contin-

uum (TCC) wave function [5] is given by

T (~ki, ~rj) =
exp (−παi) (Γ (1 − ıαi))

2
exp(ı~ki~rj)

(2π)3/2

×

b
∏

l=a

1F1

(

ıαi, 1,−ı(kirjl + ~ki~rjl)

)

, (9)

It describes a slow electron in the field of two

Coulomb centers. Here

αi = −1/ki, ~rja = ~rj + ~ρ/2, ~rjb = ~rj − ~ρ/2. (10)

The space coordinates of the wave functions are de-

fined in the molecular frame of reference, whose ori-

gin is fixed on the center of mass of the molecule and

whose z-axis is parallel to the internuclear vector ~ρ

of constant modulus.

The initial ground state configuration of N2 is

given by [8]:

1σ2
g1σ2

u2σ2
g2σ2

u3σ2
g1π4

u. (11)

The molecular orbitals σg, σu and πu-type men-

tioned above are constructed by linear combinations

of the double Slater type 1s, 1s′, 2s, 2s′, 2p, 2p′ and

single Slater type 3d atomic orbitals [8] for the in-

ternuclear distance ρ = 2.0675 a.u. We consider an

ionization from the 3σ2
g state

ϕi(r1, r2) = 3σg(r1)3σg(r2), (12)

where the 3σg is the molecular orbital with one ef-

fective electron.

An algorithm for rapid calculation of
the 1F1(a, b, ıx)

Let us consider the confluent hypergeometric

function y(x) = 1F1(a, b, ıx) with complex param-

eters a, b and argument x on the finite interval

x ∈ [0, xmax]. This function satisfies the Kummer’s

equation

x
d2y(x)

dx2
+ (b − ıx)

dy(x)

dx
− ıay(x) = 0. (13)

The main idea of the algorithm is to use a prede-

termined values of y(x) and their derivatives on the

set of points {xi = h i}N
i=0 with step h = xmax/N ,

For the interval x ∈ [0, xmax], the Taylor series gives

y(x) ≈ ȳ(x) =

n
∑

i=0

1

i!

diy(x)

dxi

∣

∣

∣

∣

∣

x=xio

(x − xio
)
i.(14)

The optimal point xio
is defined from the con-

dition min0≤i≤N |x − xi|. From here we obtain

io = [x/h + 1/2], and |x − xio
| ≤ h/2, where [x]

designates the integer part of x.

High-order derivatives of y(x) are calculated by

the relation

dny(x)

dxn
= ın

Γ(b)

Γ(a)

Γ(a + n)

Γ(b + n)
1F1(a + n, b + n, ıx). (15)

Also if xi > 2, the high-order derivatives of y(xi)

can be expressed via the recurrence formula:

x
dny(x)

dxn
+ (b + n − 2 − ıx)

dn−1y(x)

dxn−1

−ı(a + n − 2)
dn−2y(x)

dxn−2
= 0, n ≥ 2, (16)

which obtained from Eq. (13). In this case needed

only numerical values of y(xi) and its first deriva-

tive.

If h < 0.5, the double precision accuracy |y(x) −

ȳ(x)| ≤ ε = 2 · 10−16 is usually achieved at n < 20.

For the beforehand calculated values of y(x) and

their derivatives on the set of points {xi}
N
i=0, we

used the Fortran code CONHYP [9].

Numerical integration details

The corresponding (2D+6D) integrals are calcu-

lated using the adaptive subdivision algorithm, and

it has a loop that contains four steps:

i) determination of a new subdivision of the inte-

gration region,

ii) applying the basic rule to any new subregions,

iii) combining new results from step ii) to the pre-

vious results and

iv) checking the convergence.

For p-processors parallelization of above algo-

rithm we used the Single list algorithm:

p-sect region [a1, b1] × [a2, b2] × · · · × [ad, bd]

do parallel

apply integration rule to subregions

end do parallel

do while (error > ε) and (number of rule evalu-

ations ≤ Nmax)

SUBREGION SELECTION

do parallel

compute new subregion limits

apply cubature rule to new subregions

end do parallel

do parallel

remove old subregions from list

add new subregions to list

update integral approximation and error

estimate
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Figure 1: The variation, in polar representation,

of the FDCS, scaled by 105, of the double-photo

ionization of H2 in the velocity gauge obtained by

the Turbiner- Guevara wave function [10]. Polar

angle represents the θ2 of the ejected electron. Here

E1 = E2 = 12.5 eV and θ1 = 10◦. The experimental

data are from [11].

end do parallel

end do

Our p-processors parallel calculations are approx-

imately 0.8p times faster than single processor.

Results and Discussion

In what follows we take the propagation of the lin-

early polarized photon in the x direction and that

the polarization vector ~ε parallel to the z axis of

the laboratory frame. The orientation of the in-

ternuclear axis, which will be considered as fixed

during the ionization process, will be given by the

polar θρ and azimuthal ϕρ angles with respect to

the laboratory frame.

Once we have tested our procedure on hydrogen

molecule and observed that it produces, quite well,

the experimental results (see figure 1), we pass to

the photo-double ionization of N2. Here also we

will consider the photo-double ionization of N2 as a

vertical transition from the fundamental electronic

state of the neutral target at its equilibrium inter-

nuclear distance to the fundamental 1Σg state of the

residual N
2+

2 dication. The case of the photo double

ionization to the neighboring 3Πu final state of N
2+

2 ,

which should contribute to the results in experi-

ments, which have low energy resolution and can-

not distinguish between the the two possible events

(see [12, 13]). The present work is a first tenta-

tive to tackle the photo-double ionization of N2 by

the correlated TCC function. We will apply, at this

stage, the wave function described in section The-

Figure 2: On the top: color scale representation

of the variation of the TDCS in atomic units Eq.

(2), scaled by 104, of the photo-double ionization of

the 3σg level of N2 obtained by the velocity gauge

in terms the two ejection angles θ1 and θ2. Here

E1 = E2 = 10 eV, and the vectors k1, k2, ε lie in

the same plane. On the bottom: the equivalent rep-

resentation obtained by the Gaussian parametriza-

tion fit.

ory, which is constructed by Hartree-Fock diatomic

orbital (see Eq. (12)). Higher quality wave func-

tions including the electron-electron separation r12

are more difficult to obtain, and their application

is much more time consuming. We will undertake

this work in a future paper. Our results will be

compared to those obtained by the best fit of the

following Gaussian parametrization formula [14]

f(θ1, θ2) = a (cos(θ1) + cos(θ2))
2

× exp

[

−4 ln(2)
(θ12 − 180◦)2

Γ2

]

. (17)
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Figure 3: Polar representation of the variation of

the TDCS (see fig. 2). The solid line represents the

results obtained by Eq. (2). The dashed line those

obtained by the Gaussian parameterization. Left-

top: θ1 = 2π − θ2, right-top: θ1 = 60◦, left-bottom:

θ1 = 180◦, right-bottom: θ1 = 90◦.

The fitting is done by minimizing the following func-

tion with respect to the parameters a, Γ, using a

comprehensive modified Newton algorithm:

F (a,Γ) =
1

372

×

37
∑

i,j=1

(

σ(3)
(θi

1, θ
j
2) − f(θi

1, θ
j
2)

)2

→a,Γ min, (18)

θi
1 = 10

◦

(i − 1), θ
j
2 = 10

◦

(j − 1),

with σ(3)(θi
1, θ

j
2) representing our calculated TDCS.

The reached accuracy is 10−6. This gives the best

correlation factor width Γ = Γ(E) = 1.7346 = 99.4◦

and a = a(E) = 1.2945 × 10−3, F (a,Γ) = 1.0029 ×

10−1.

We see that the diagonal of this figure θ1 = θ2 is

an axis of symmetry, as we obtain practically the

same structure on both sided of this line. We must

mention here, that the perfect symmetry on the fig-

ure is obtained by employing accurate averaging in-

tegration over the molecular orientations. We next

observe, that the second diagonal line defined by

θ1 + θ2 = 2π is also a symmetry axis as expected.

In the same manner the lines θ1 = θ2 ± π have the

same structure on their two sides as expected also.

On figure 3 (left-top) we observe that when E1 =

E2 and θ1 = 2π − θ2 the four lobes are identical as

they should be. On figure 3 (right-top) we show the

variation which gives the largest lobe. This hap-

pens for θ1 = 60◦. Analysis of the geometries with

θ1 = 180◦ and θ1 = 90◦ (see figures 3 (left-bottom

and right-bottom)), corresponding in the first case

to the electron with wave vector ~k1 ejected in di-

rection of ~ε and in the second case perpendicular to

it, shows, as expected, the second geometry which

puts ~k1 far from the polarization vector ~ε to be more

efficient.

Conclusions

We have determined the four fold and triple dif-

ferential cross sections, corresponding respectively

to the oriented and randomly oriented diatomic

molecules, of the photo-double ionization of H2

and N2 diatomic systems, in equal ejection en-

ergy regime, by applying the correlated product of

two two center continuum function, to describe the

two equivalent ejected electrons, which has the ad-

vantage of showing the influence of the final state

electron-electron correlation. We have applied three

different initial states wave function for the funda-

mental state of H2 and shown the importance of

the initial state correlation and obtained quite good

agreement with the experimental results. In the

case of N2, basic Hartree-Fock diatomic orbitals are

obtained and applied as a first attempt. The results

verify the symmetry conditions of the TDCS and

show the optimal ejection directions for an equal

energy sharing geometry. The comparison with the

fitted Gaussian parametrization results show some

instructive deflections due to the diatomic nature

of the targets. The case of unequal ejection en-

ergy, and the neighboring 3Πu state of N
2+

2 , which

190



presents open shell configurations will be treated in

a near future paper.
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